5 research outputs found

    Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency

    Get PDF
    Many production facilities consist of multiple and functionally exchangeable units of equipment, such as pumps or turbines, that are jointly used to satisfy a given production target. Such systems often have to ensure high levels of reliability and availability. The deterioration rates of the units typically depend on their production rates, implying that the operator can control deterioration by dynamically reallocating load among units. In this study, we examine the value of condition-based load-sharing decisions for two-unit systems with economic dependency. We formulate the system as a Markov decision process and provide optimal joint condition-based maintenance and production policies. Our numerical results show that, dependent on the system characteristics, substantial cost savings of up to 40% can be realized compared to the optimal condition-based maintenance policy under equal load-sharing. The structure of the optimal policy particularly depends on the maintenance setup cost and the penalty that is incurred if the production target is not satisfied. For systems with high setup costs, the clustering of maintenance interventions is improved by synchronizing the deterioration of the units. On the contrary, for low setup costs, the deterioration levels are desynchronized and the maintenance interventions are alternated

    Seasonal hydrogen storage decisions under constrained electricity distribution capacity

    Get PDF
    We consider a profit-maximizing renewable energy producer operating in a rural area with limited electricity distribution capacity to the grid. While maximizing profits, the energy producer is responsible for the electricity supply of a local community that aims to be self-sufficient. Energy storage is required to deal with the energy productions' uncertain and intermittent character. A promising, new solution is to use strategic hydrogen reserves. This provides a long-term storage option to deal with seasonal mismatches in energy production and the local community's demand. Using a Markov decision process, we provide a model that determines optimal daily decisions on how much energy to store as hydrogen and buy or sell from the power grid. We explicitly consider the seasonality and uncertainty of production, demand, and electricity prices. We show that ignoring seasonal demand and production patterns is suboptimal and that introducing hydrogen storage transforms loss-making operations into profitable ones. Extensive numerical experiments show that the distribution capacity should not be too small to prevent local grid congestion. A higher storage capacity increases the number of buying actions from the grid, thereby causing more congestion, which is problematic for the grid operator. We conclude that a profit-maximizing hydrogen storage operation alone is not an alternative to grid expansion to solve congestion, which is essential knowledge for policy-makers and grid operators

    A Green Hydrogen Energy System - Optimal control strategies for integrated hydrogen storage and power generation with wind energy

    No full text
    The intermittent nature of renewable energy resources such as wind and solar causes the energy supply to be less predictable leading to possible mismatches in the power network. To this end, hydrogen production and storage can provide a solution by increasing flexibility within the system. Stored hydrogen as compressed gas can either be converted back to electricity or it can be used as feed-stock for industry, heating for built environment, and as fuel for vehicles. This research is the first to examine optimal strategies for operating integrated energy systems consisting of renewable energy production and hydrogen storage with direct gas-based use-cases for hydrogen. Using Markov decision process theory, we construct optimal policies for day-to-day decisions on how much energy to store as hydrogen, or buy from or sell to the electricity market, and on how much hydrogen to sell for use as gas. We pay special emphasis to practical settings, such as contractually binding power purchase agreements, varying electricity prices, different distribution channels, green hydrogen offtake agreements, and hydrogen market price uncertainties. Extensive experiments and analysis are performed in the context of Northern Netherlands where Europe's first Hydrogen Valley is being formed. Results show that substantial gains in operational revenues of up to 51% are possible by introducing hydrogen storage units and competitive hydrogen market-prices. This amounts to a 126,000 euro increase in revenues per turbine per year for a 4.5 MW wind turbine. Moreover, our results indicate that hydrogen offtake agreements will be crucial in keeping the energy transition on track
    corecore